
Moving KML geometry elements within Google Earth

Liang-feng Zhu n, Xi-feng Wang, Xin Pan
Key Laboratory of GIS, East China Normal University, Shanghai 200241, China

a r t i c l e i n f o

Available online 1 August 2014

Keywords:
Virtual globe
Google Earth
KML
Moving transformation
Geometry element

a b s t r a c t

During the process of modeling and visualizing geospatial information on the Google Earth virtual globe,
there is an increasing demand to carry out such operations as moving geospatial objects defined by KML
geometry elements horizontally or vertically. Due to the absence of the functionality and user interface
for performing the moving transformation, it is either hard or impossible to interactively move multiple
geospatial objects only using the existing Google Earth desktop application, especially when the data
sets are in large volume. In this paper, we present a general framework and associated implementation
methods for moving multiple KML geometry elements within Google Earth. In our proposed framework,
we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from
the imported KML objects. Subsequently, we interactively control the movement distance along a
specified orientation by employing a custom user interface, calculate the transformed geographic
location for each KML geometry element, and adjust geographic coordinates of the points in each KML
objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D
visualization and spatial analysis. A key advantage of the proposed framework is that it provides a
simple, uniform and efficient user interface for moving multiple KML geometry elements within Google
Earth. More importantly, the proposed framework and associated implementations can be conveniently
integrated into other customizable Google Earth applications to support interactively visualizing and
analyzing geospatial objects defined by KML geometry elements.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays a series of sophisticated and powerful online virtual
globes, led by Google Earth, are becoming reliable platforms for
communicating, analyzing and sharing geospatial information that
is large-extent, multi-scaled, multi-source, massive and heteroge-
neous (Butler, 2006; Bailey and Chen, 2011; Goodchild et al., 2012;
Yu and Gong, 2012). The Google Earth virtual globe has been widely
embraced by earth scientists, educators, government officials and
the general public as an important and everyday tool to conduct
research, exchange ideas and share knowledge with a global
perspective in a natural and intuitive way, mainly because it
possesses the ability to support the OpenGIS KML Encoding
Standard (OGC KML) (Wilson, 2008; Ballagh et al., 2011; De Paor
et al., 2012; Lee and Guertin, 2012). As an open data standard for
encoding representations of geospatial information visually, KML
enables users of Google Earth or other geo-browsers to add custom
geospatial data to virtual globes in a variety of formats, and allows
users to create a variety of powerful user interface controls that
interact with their own data (De Paor and Whitmeyer, 2011).
Without having to develop a more sophisticated 3D/4D virtual

environment from the low level, users of Google Earth only need to
describe and save their own geospatial information in formats
according to the OpenGIS KML Encoding Standard, and the Google
Earth virtual globe can effectively load and vividly visualize that
information over the Internet (Zhu et al., 2014).

In recent years, several earth scientists and industry developers
have launched a series of explorations on how best to model and
visualize geospatial information within Google Earth using KML
(Whitmeyer et al., 2010; Bailey et al., 2012; Stewart and Baldwin,
2012; Martínez-Graña et al., 2013; Wang et al., 2013). For example,
De Paor and Whitmeyer (2011) have described a variety of
techniques and methods through which KML can be used to
control the visualization of geological and geophysical data on
Google Earth, and presented a method to create dynamic models
that illustrate the internal structure of the Earth by using COLLADA
and JavaScript. Postpischl et al. (2011) addressed the problem of
the standardization and visualization of seismic tomographic
models and earthquake focal mechanisms data sets using web
technologies and KML. Blenkinsop (2012) has used a macro-
enabled Excel workbook to convert field data into KML documents
for the purpose of representing structural geology in Google Earth.
Zhu et al. (2014) presented an automatic method for modeling and
visualizing large volume of borehole information on Google Earth
using KML. The above-mentioned advances have achieved suc-
cesses to a greater or lesser extent in specific fields of use, which

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2014.07.016
0098-3004/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 13671721009.
E-mail addresses: lfzhu@geo.ecnu.edu.cn (L.-f. Zhu),

wangxifeng0817@163.com (X.-f. Wang), xpan@admin.ecnu.edu.cn (X. Pan).

Computers & Geosciences 72 (2014) 176–183

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.07.016
http://dx.doi.org/10.1016/j.cageo.2014.07.016
http://dx.doi.org/10.1016/j.cageo.2014.07.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.07.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.07.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.07.016&domain=pdf
mailto:lfzhu@geo.ecnu.edu.cn
mailto:wangxifeng0817@163.com
mailto:xpan@admin.ecnu.edu.cn
http://dx.doi.org/10.1016/j.cageo.2014.07.016

also played significant roles in promoting the development and
professional application of the Google Earth virtual globe.

After a thorough evaluation of the applications, we have
detected several serious limitations when using the existing
Google Earth desktop application and its user interface controls
to model, visualize and analyze geospatial information. One of the
current main shortcomings of Google Earth is its inability to
represent the underground space of the Earth (De Paor and
Whitmeyer, 2011; Navin and de Hoog, 2011). Technically speaking,
Google Earth only provides a 2.5D digital globe that ideally suited
for the modeling, visualization and analysis of geospatial informa-
tion relevant to the Earth's surface and near-surface. Therefore, it
is unable to directly display or analyze subsurface objects/phe-
nomena/processes in the correct locations beneath the Earth's
surface. In order to model, visualize and interpret subsurface
features, some elegant tricks need to be designed and applied to
bring subsurface information into view. Recently, two techniques
have been developed to address the needs of visualizing the
subsurface. One technique is to set an uplifted height value for
the purpose of elevating the vertical position of subsurface
features and to make them visible above the Earth's terrain surface
(De Paor and Whitmeyer, 2011; Zhu et al., 2014). This is a static
way of elevating subsurface models into view, and has the
advantage of easy to implement. However, in this way, it is either
hard or impossible to interactively move subsurface features
because their altitudes would be fixed after lifted. A second
approach is to pre-generate a set of KML objects containing KML
〈TimeSpan〉 tags with sequential increased altitudes, and to exploit
the built-in Google Earth time slider control to raise objects up out
of the surface (De Paor and Pinan-Llamas, 2006; De Paor and
Williams, 2006; De Paor et al., 2008; De Paor and Whitmeyer,
2011; Dordevic, 2012). This approach provides high quality anima-
tion capability with visually appealing appearances, but suffers
from the huge data redundancy. Moreover, the built-in Google
Earth time slider is originally designed for controlling time
intervals of displaying KML objects, thus it is not appropriate to
elevate subsurface models. During the elevating process, the
double-thumb feature and the display of values/units for elevation
in the time slider often cause users confusion (Dordevic, 2012).
Therefore, this approach is useful but should not be regarded as
a perfect method for the modeling and visualization of subsur-
face features.

To overcome the above limitations on visualizing the subsur-
face, a more straightforward, intuitive and accessible solution can
be obtained by moving subsurface features interactively within
Google Earth to change their locations in 3D space. However, the
current Google Earth desktop application, which falls short of
advanced functions in 3D interaction for geospatial objects, is
unable to offer existing tools or built-in functions to move
geospatial objects freely and flexibly, especially when the objects
are massive. Using the stand-alone Google Earth desktop applica-
tion, users can choose and move a single KML geometry element,
but they are unable to pick or move multiple geometry elements
simultaneously. In addition, users cannot precisely control the
movement distance through the user interface provided by the
standard Google Earth desktop application. This shortcoming
seriously limits the use of Google Earth in some specific Earth
science subjects (especially geology and geophysics) and multi-
disciplinary research, and there is a pressing need for a more
specialized tool to move geospatial objects within Google Earth.

Recently, some research teams have invested considerable effort
into how to move geospatial objects within Google Earth, and several
technologies have been proposed and applied by geologists and
engineers. For example, Whitmeyer (2012) has written a Perl script
to move points, lines and polygons in a KML file by a specified
number of meters without distorting the shapes of geospatial objects.

This script can be utilized to move continental components, crustal
fragments and other geological structures for tectonic reconstruc-
tions. However, due to the limitation of the implementation program,
this script seemed to lack the flexibility since it only supports the
command-line (console) operation to process KML files. That is, users
could neither move KML objects interactively nor control the move-
ment distance through an efficient graphical user interface. By using
the Google Earth web plug-in and its JavaScript application program-
ming interface (API), Dordevic (2013) has designed a webpage
(http://www.digitalplanet.org/API/SOS/index.html), which embeds
interactive screen overlays as custom sliders, to control COLLADA
models to emerge from the subsurface. This webpage has proven to
be quite effective for handling 3D COLLADA models, but it could not
be expanded to deal with other types of geospatial objects. In brief,
up to now there are still no comprehensive methods or systematic
applications for moving various types of geospatial objects within
Google Earth. Therefore, there is a clear need for developing a
universal method to handle all types of KML objects.

In this paper, we explore the transformation techniques and
associated implementation methods for moving KML geometry
elements within Google Earth. Our ultimate goal is to present a
general framework for the moving transformation, which is
suitable to deal with all types of KML geometry elements freely
and flexibly. This paper first summarizes the classification and the
description of KML geometry elements, as well as the method for
defining their geospatial positions. Subsequently, the overall
framework and key steps for performing the moving transforma-
tion are illustrated in great detail. The implementation program
and its application are finally presented.

2. KML geometry elements

In digital globes, geospatial objects are generalized as points,
lines, polygons and other types of geometry elements. As listed in
Table 1, OGC KML 2.2 (Wilson, 2008) supports six types of geometry
elements derived from the abstract 〈kml:Geometry〉 element,
including five primitive geometry elements (〈kml:Point〉, 〈kml:Line-
String〉, 〈kml:LinearRing〉, 〈kml:Polygon〉 and 〈kml:Model〉) and one
multiple geometry element (〈kml:MultiGeometry〉). For 〈kml:Point〉,
〈kml:LineString〉, 〈kml:LinearRing〉 and 〈kml:Polygon〉 elements,
their positions on the Earth are defined by the 〈kml:coordinates〉
element (Wernecke, 2009). The initial placement of the 〈kml:
Model〉 element is specified by the 〈kml:Location〉 element, and
the 〈kml:Location〉 element contains the 〈kml:longitude〉, 〈kml:
latitude〉 and 〈kml:altitude〉 child elements. The 〈kml:MultiGeome-
try〉 element is a container for zero or more geometric primitives
associated with the same KML feature (Wilson, 2008; Wernecke,
2009). Therefore, it can be decomposed into a set of primitive
geometry elements like 〈kml:Point〉, 〈kml:LineString〉, 〈kml:LinearR-
ing〉, 〈kml:Polygon〉 or 〈kml:Model〉, and the position of each
primitive geometry element is specified by the corresponding
〈kml:coordinates〉 or 〈kml:Location〉 element.

3. General framework and key steps

The existing Google Earth desktop application is insufficient to
perform the moving transformation as it neither supports moving
multiple objects simultaneously nor provides precise controls on
movement distances. In order to move multiple KML geometry
elements freely and flexibly, we need to transition from the Google
Earth desktop application to the Google Earth web-browser plug-
in, design and develop a custom component and corresponding
operating interface by employing the Google Earth plug-in and its
JavaScript API.

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183 177

Fig. 1 shows a schematic representation of the overall frame-
work for the moving transformation of KML geometry elements
within Google Earth. As Fig. 2 shows, the implementation of the
moving transformation can be decomposed into five steps, and the
step-by-step execution is explained below.

3.1. Load KML objects

The first step is to load KML objects into the Google Earth plug-
in, as initial input data for the moving transformation. KML objects
are usually stored in a KML string or a hosted KML/KMZ file. In
Google Earth API (Google, 2014), there are three methods of
importing KML objects into the Google Earth plug-in: KmlNet-
workLink, fetchKml and parseKml (Nurik, 2009). The KmlNetwork-
Link and fetchKml methods can be used to load a hosted KML/KMZ

file from a specified URL, while the parseKml method is ideally
suited for loading an arbitrary KML string that is not hosted
publicly.

Here is an example of using the KmlNetworkLink approach to
load a KML/KMZ file:

var link¼ge.createLink(");
var kmlUrl ¼ ‘http://www.sirrs.org/movekml/testpoint.kml’;
//A KML file that is hosted at some public URL
link.setHref(kmlUrl);
var networkLink¼ge.createNetworkLink(");
networkLink.set(link, true, true);
ge.getFeatures().appendChild(networkLink);
Here is the JavaScript code of using the fetchKml technique to
load a KML/KMZ file:
var kmlUrl¼ ‘http://www.sirrs.org/movekml/testpoint.kml’;
//The hosted KML file
google.earth.fetchKml(ge, kmlUrl, function(kmlObject) {
if (kmlObject)
ge.getFeatures().appendChild(kmlObject);
});

Table 1
KML geometry element types.

KML geometry
element

Description Define method for geospatial position

〈kml:Point〉 0-Dimensional geometric primitive, representing a
spatial position.

A spatial location defined by a single geodetic longitude, geodetic latitude, and (optional)
altitude coordinate tuple.

〈kml:LineString〉 Curve composed of a connected set of straight-line
segments.

A list of two or more coordinate tuples. Each tuple contains the longitude, latitude, and
(optional) altitude.

〈kml:LinearRing〉 Closed line string that should not cross itself,
typically the outer or inner boundary of a polygon.

A list of four or more coordinate tuples where the first and last coordinate tuples must be
the same (to form the closed loop). Each tuple contains the longitude, latitude, and
(optional) altitude.

〈kml:Polygon〉 Planar surface defined by 1 exterior boundary and
0 or more interior boundaries.

One outer boundary ring and zero or more inner boundary rings. Each ring is defined by
the 〈kml:LinearRing〉 element.

〈kml:Model〉 3D object described in a COLLADA file. The exact coordinates of the initial placement of a 〈kml:Model〉 element is specified by the
〈kml:Location〉 element, comprising the 〈kml:longitude〉, 〈kml:latitude〉 and 〈kml:altitude〉
child elements.

〈kml:MultiGeometry〉 Container for zero or more geometric primitives
associated with the same KML feature.

A collection of discrete geometric primitives listed above.

Google Earth Server KML objects

Set movement distances

Extract KML geometry
elements

Moving transformation

Transformed KML
geometry elements

Visualize and analyze
KML geometry elements

General-purpose
slider controls

Interactive screen
overlays as sliders

Web-based Google Earth Plug-inGraphical User Interface (GUI) for Moving Transformation

Fig. 1. Overall framework for the moving transformation of KML geometry
elements within Google Earth. The sharp-cornered rectangles represent the KML
objects; the round-cornered rectangles represent the program components that
process the KML objects; the thin black arrow lines denote the data flows in the
moving transformation; and the red double-headed arrows depict the graphical
user interface controls and interaction between the program components and its
user. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Load KML objects

Extract KML geometry elements

Set movement distances

Display transformed KML geometry
elements on Google Earth

Adjust geographic coordinates of KML
geometry elements

Fig. 2. Flow chart for implementing the moving transformation of KML geometry
elements within Google Earth.

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183178

The JavaScript code for loading and displaying a KML string
with the parseKml method looks like this:

var kmlString¼"
þ ‘o?xml version¼“1.0” encoding¼“UTF-8”?4 ’

þ ‘okml xmlns¼“http://www.opengis.net/kml/2.2”4 ’

þ ‘oPlacemark4 ’

þ ‘oname4Placemark from KML stringo/name4 ’

þ ‘oPoint4 ’

þ ‘ocoordinates4-122.1, 37.9, 0o/coordinates4 ’

þ ‘o/Point4 ’

þ ‘o/Placemark4 ’

þ ‘o/kml4 ’;
var kmlObject¼ge.parseKml(kmlString);
ge.getFeatures().appendChild(kmlObject);

3.2. Extract KML geometry elements

The second step is to extract KML geometry elements from the
imported KML objects in the Google Earth plug-in, used for the
subsequent moving transformation. We can use the getElement-
ById or getElementByUrl functions in the Google Earth API to get a
specified KML geometry element by its ID or URL (Google, 2014):

var kmlElements¼ge.getElementById(string ID); //Get a KML
geometry element by its ID

var kmlElements¼ge.getElementByUrl (string url); //Get a KML
geometry element by its URL

In order to get a list of elements by a specified geometry type,
we employ the getElementsByType function as follows (Google,
2014):

var points¼ge.getElementsByType(‘KmlPoint’);//Get all points
var linestrings¼ge.getElementsByType(‘KmlLineString’);//Get
all line strings
var linearrings¼ge.getElementsByType(‘KmlLinearRing’);//Get
all linear rings
var polygons¼ge.getElementsByType(‘KmlPolygon’);//Get all
polygons
var models¼ge.getElementsByType(‘KmlModel’);//Get
all models
var MultiGeometries¼ge.getElementsByType(‘KmlMultiGeo-
metry’); //Get all multi-geometries

3.3. Set movement distances

In the third step, we manually input the displacement along a
specified orientation to specify how a transformation is performed
on the selected objects. Within Google Earth, there are three cases
of moving transformation to be taken into account: moving along
the vertical direction, moving along the latitudinal (east–west)
direction, and moving along the longitudinal (north–south) direc-
tion. Correspondingly, we have an obligation to set the movement
distances respectively along each direction.

When setting movement distances within the Google Earth
plug-in, there are two practical graphical user interfaces to control
the displacement interactively:

The simplest approach is to incorporate existing general-purpose
slider controls, such as the Tigra slider control (SoftComplex Inc.,
2010) and the HTML-native slider, to control the movement distances
interactively. The general-purpose slider control, which could be
located on the webpage outside the Google Earth container (De Paor
et al., 2012), usually consists of two elements: the draggable piece
(thumb), and the track along which the thumb can travel freely. Once
the thumb is dragged to a position on the track, the position of the

thumb is translated into the value of the movement distance to
change the displacement of the KML geometry elements.

A more compelling approach for controlling the displacement
is to create custom slider controls within the Google Earth
container by employing interactive screen overlays (Dordevic,
2012), and to drag those custom sliders in order to set movement
distances. A screen overlay is an image that is fixed to a specified
location on the screen (Wernecke, 2009). We can generate a
custom slider through arranging two screen overlays with appro-
priate sizes into corresponding positions on the window of the
Google Earth plug-in. One screen overlay is used as the stationary
track, and the other screen overlay is used as the draggable thumb
(Dordevic, 2012). Similar to the built-in Google Earth navigation
controls, this custom slider also has the virtue of being semitran-
sparent. That is, only when the screen defined by the slider gains
focus can the slider becomes interactive and draggable. By using
this screen-overlay-based slider, we can maintain application
responsiveness and enhance interactivity when setting movement
distances for KML geometry elements.

3.4. Adjust geographic coordinates of KML geometry elements

The main work of the fourth step contains calculating the
transformed geographic location for each KML geometry element
according to the movement distance, and adjusting geographic
coordinates of the points in each KML geometry element. In this
step, two essential problems need to be solved: one is how to
calculate the transformed location for a KML geometry element,
and the other is how to adjust geographic coordinates of multiple
KML geometry elements in a fast and batched way. The following
subsections are explanations of these problems.

3.4.1. Calculate geographic locations for moving transformation
Any moving transformation to a specified KML geometry

element can be ultimately attributed to the coordinate transfor-
mation of the points composed that KML geometry element. In a
relatively small range of the Earth's surface and near-surface, after
moving transformation the geographic coordinate (longitude,
latitude and altitude) of a specified point can be calculated as
follows (Whitmeyer, 2012):

λ1 ¼ λ0þ
Δλ� 180

π � ðrþh0Þ � cos φ0

φ1 ¼φ0þ
Δφ� 180
2cþπh0

h1 ¼ h0þΔh

where λ0, φ0,and h0 are initial 3D coordinates (longitude, latitude
and altitude respectively) of the point (the longitude and latitude
are defined in decimal degrees, and the altitude is defined
in meters); λ1, φ1, and h1 are 3D coordinates of the transformed
point; Δλ is the movement distance (in meters) along the long-
itudinal (north–south) direction;Δφ is the movement distance (in
meters) along the latitudinal (east–west) direction; Δh is the
movement distance (in meters) along the vertical direction; r is
the equatorial radius, r¼6,378,137 m; c is the distance from the
equator to a pole, c¼10001965.729 m; and π is the circumference
ratio (pi).

It should be pointed out that the above equations relate only to
small scale objects and motions in a relatively small range of the
Earth's surface and near-surface (from meters to tens of kilo-
meters). In this situation, the curvature of the Earth is not an issue
and should not be considered when moving transformation. For
large objects such as continents and large movements over
thousands of kilometers, a different approach using Euler poles

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183 179

and quaternion interpolation (De Paor, 1996; Dordevic and
Whitmeyer, 2014) is required.

3.4.2. Adjust geographic coordinates in a fast and batched way
On the Google Earth virtual globe, usually there are plenty of

KML geometry elements that need to be moved almost simulta-
neously. Due to the vast amount and complicated structure of KML
geometry elements, challenges arise when adjusting geographic
coordinates of massive KML geometry elements at one time. In
order to enhance the efficiency of moving a large volume of KML
geometry elements within Google Earth, an automatic, fast and
batched method to adjust geographic coordinates of KML geome-
try elements needs to be designed and implemented. In the fourth
step, we first use Google Earth API to extract the initial 3D
coordinates of each point in each KML geometry element, and
then calculate the offsets of the 3D coordinates according to the
movement distances, and finally adjust the location of the point in
terms of the offsets.

The JavaScript code of moving multiple KML geometry ele-
ments almost at the same time works as follows:

function moveKmlGeometryElements(deltaLat, deltaLng,
deltaAlt) {
// deltaLat – The movement distance (in meters) along the
latitudinal (east–west) direction
// deltaLng – The movement distance (in meters) along the
longitudinal (north–south) direction
// deltaAlt – The movement distance (in meters) along the
vertical direction
var i¼null;
var pi_value¼Math.PI; //Pi
var radius_earth¼6378137; //The equatorial radius
var c_distance¼10001965.729; //The distance from the equator
to a pole
var deltaLat1¼0;
var deltaLng1¼0;
var deltaAlt1¼0;
//Move points
var points¼ge.getElementsByType(‘KmlPoint’);//Get all points
for (i¼0; iopoints.getLength(); iþþ) {
var pointi¼points.item(i);
//The initial 3D coordinates of a point
var lati¼pointi.getLatitude();
var lngi¼pointi.getLongitude();
var alti¼pointi.getAltitude();
//Calculate the offsets of 3D coordinates according to the
movement distances
deltaLat1¼(deltaLatn180)/(2nc_distanceþpi_valuenalti);
deltaLng1¼(deltaLngn180)/(pi_valuen(radius_earthþalti)n

Math.cos(lati n pi_value/180.0));
deltaAlt1¼deltaAlt;
var newlati¼ latiþdeltaLat1;
var newlngi¼ lngiþdeltaLng1;
if (newlati490) { newlati¼90; }
if (newlatio�90) { newlati¼-90;}
if (newlngi4180) { newlngi¼newlngi - 360; }
if (newlngio�180) { newlngi¼newlatiþ360; }
//Adjust the location of the point using the offsets
pointi.setLatLngAlt(newlati, newlngi, altiþdeltaAlt1);
}
//Handle line strings, linear rings and polygons
var linestrings¼ge.getElementsByType(‘KmlLineString’);//Get
all line strings, also including linear rings and polygons
for (i¼0; io linestrings.getLength(); iþþ) {
var pointi¼null;

var pointCoordArray¼null;
pointi¼ linestrings.item(i);
pointCoordArray¼pointi.getCoordinates ();
for (var j¼0;jopointCoordArray.getLength(); jþþ){
var pointCoord¼pointCoordArray.get(j);
//The initial 3D coordinates of a point
var lati¼pointCoord.getLatitude();
var lngi¼pointCoord.getLongitude();
var alti¼pointCoord.getAltitude();
//Calculate the offsets of 3D coordinates
deltaLat1¼(deltaLatn180)/(2nc_distanceþpi_valuenalti);
deltaLng1¼(deltaLngn180)/(pi_valuen(radius_earthþalti)n

Math.cos(lati n pi_value/180.0));
deltaAlt1¼deltaAlt;
var newlati¼ latiþdeltaLat1;
var newlngi¼ lngiþdeltaLng1;
if (newlati490) {newlati¼90;}
if (newlatio�90) { newlati¼�90; }
if (newlngi4180) { newlngi¼newlngi�360;}
if (newlngio�180) {newlngi¼newlatiþ360;}
//Adjust the location of the point using the offsets
pointCoordArray.setLatLngAlt(j, newlati, newlngi, altiþ
deltaAlt1);
}
}
//Move 3D models
var models¼ge.getElementsByType(‘KmlModel’); //Get all
3D models
for (i¼0; iomodels.getLength(); iþþ) {
var modeli¼models.item(i);
var modelLoc¼null;
modelLoc¼modeli.getLocation();
//The initial placement of a model
var lati¼modelLoc.getLatitude();
var lngi¼modelLoc.getLongitude();
var alti¼modelLoc.getAltitude();
//Calculate the offsets of 3D coordinates
deltaLat1¼(deltaLatn180)/(2nc_distanceþpi_valuenalti);
deltaLng1¼(deltaLngn180)/(pi_valuen(radius_earthþalti)n

Math.cos(lati n pi_value/180.0));
deltaAlt1¼deltaAlt;
var newlati¼ latiþdeltaLat1;
var newlngi¼ lngiþdeltaLng1;
if (newlati490) {newlati¼90;}
if (newlatio�90) {newlati¼-90; }
if (newlngi4180) { newlngi¼newlngi – 360;}
if (newlngio�180) {newlngi¼newlatiþ360;}
//Adjust the location of the model using the offsets
modelLoc.setLatLngAlt(newlati, newlngi,altiþdeltaAlt1);
}
}

In this example, we use a code fragment to handle line strings,
linear rings and polygons simultaneously. As presented in Table 1,
geospatial positions of the outer/inner boundaries in polygons are
defined by the KML 〈LinearRing〉 elements. While in Google Earth
API, the KmlLinearRing class is derived from the KmlLineString
class. Therefore, any transformation to a polygon or linear ring can
be traced back to the KML 〈LineString〉 element. Accordingly, the
moving transformation of polygons and linear rings can be
handled along with line strings.

It should be pointed out that we do not need any special code to
deal with multi-geometries. This is because the 〈MultiGeometry〉
element is only a collection of multiple geometry elements asso-
ciated with the same KML feature, and the transformation of any

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183180

multi-geometry can be traced back to corresponding geometric
primitives like points, line strings, linear rings, polygons or models.

3.5. Display transformed KML geometry elements on Google Earth

Finally, transformed KML geometry elements are displayed in
the Google Earth plug-in for 3D visualization and spatial analysis.
Using graphical interactive devices (such as the mouse and the
keyboard) in the 3D-rendering environment provided by Google
Earth, we can freely observe the locations of the transformed KML
geometry elements, and query the property information asso-
ciated with those elements.

4. Implementation and application

To illustrate the effectiveness of the proposed framework for the
moving transformation of KML geometry elements, a webpage
(http://www.sirrs.org/MoveKml/en/MoveKml.html), termed Moving
KML, is designed and developed using the Google Earth web browser
plug-in and its JavaScript API. As shown in Fig. 3, the user interface of
MovingKML is composed of three parts: (1) the input area, which is
designed for importing the URL of a hosted KML/KMZ file, is located
in the top of the webpage; (2) the Google Earth container, also
incorporating three screen-overlay-based custom sliders, is located in
the left side of the screen; and (3) the slider control area, containing
three general-purpose slider controls, is located in the right side of
the screen. In the slider control area, the Tigra slider control
(SoftComplex Inc., 2010), a frequently-used DHTML component for
adding vertical/horizontal sliders to HTML webpages, is instantiated

as the interactive tool to control the movement distance. Any
computer that already has the Google Earth web plug-in installed
can freely visit this webpage on a decent broadband connection.
After loading a hosted KML/KMZ file from a specified URL, users of
this webpage can move multiple KML geometry elements arbitrarily.

When using MovingKML, we first input the URL of any hosted
KML/KMZ file and click the “Load KML/KMZ” button, and then the
KML geometry elements stored in the KML/KMZ file immediately
appear in the Google Earth container. By employing the general-
purpose slider controls, which are located on the webpage beside
the Google Earth container, we can manually set the movement
distance along a specified direction. Alternatively, the screen-
overlay-based custom sliders, which are embedded in the Google
Earth container, also can be used to control the movement
distances. In the light of the predefined movement distance,
MovingKML automatically adjusts the geographic coordinates of
the KML geometry elements, and displays the transformed KML
geometry elements on the Google Earth container quasi-instantly.
By performing the above-mentioned operations with a flexible
and intuitive graphical user interface (GUI), we are able to move a
large volume of KML geometry elements in a fast and batched way.

An example of moving KML geometry elements is illustrated in
Fig. 4. In this example, a KML file (http://www.sirrs.org/MoveKml/
testkml/TestKmlFile.kml) is loaded into the Google Earth con-
tainer. This file contains several subsurface objects, including a
borehole model that incorporates a drilling location, several strata
and corresponding contacts, and a COLLADA model that represents
the subsurface geological structure. As shown in Fig. 4A, the
subsurface objects originally hide behind the Earth's surface.
Therefore, they couldn’t be directly displayed on the Google Earth

General-purpose slider controls

Input KML/KMZFile

Screen-overlay-based sliders

Google Earth Container

Fig. 3. User interface of MovingKML.

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183 181

http://www.sirrs.org/MoveKml/en/MoveKml.html

virtual globe. In order to make them visible above the Earth's
terrain surface, we employ vertical sliders to manually uplift the
altitudes of the subsurface KML objects, and the subsurface objects
immediately emerge from the subsurface (Fig. 4B). Similarly, using
horizontal sliders provided by MovingKML, we also can horizon-
tally move the KML geometry elements through setting the
movement distance along the latitudinal (east–west) or long-
itudinal (north–south) direction (Fig.4C).

5. Conclusion

With the increasing need for geospatial information and the
widespread use of the Google Earth virtual globe, KML is becoming
an international standard that has been widely embraced by
geoscientists as a means to represent, publish and exchange
geospatial objects, and there are increasing amounts of KML-
based information resources available that cater to different

Original Position

Fig. 4. Example of moving KML geometry elements using MovingKML: (A) The subsurface objects are originally located below the Earth's surface, and cannot be directly
displayed on Google Earth. (B) The vertical positions of the subsurface objects are manually elevated by 200 m in order to make them visible above the Earth's terrain surface.
(C) The horizontal positions of the subsurface objects are shifted by 325 m westwards from the previous positions.

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183182

disciplines and audiences. In the field of Digital Earth science and
technology, it has become a topical research area to focus on
interactively visualizing and analyzing geospatial information
within virtual globe applications. Due to the current limitations
of Google Earth, it is either hard or impossible to interactively
move KML objects only using the existing Google Earth desktop
application, especially when the data sets are in large volume. In
this paper, we have designed and illustrated the general frame-
work and associated implementation methods for moving multi-
ple KML geometry elements within Google Earth. A key advantage
of the proposed framework is that it provides a simple, uniform
and efficient user interface for moving multiple KML geometry
elements within the Google Earth virtual globe. More importantly,
the proposed framework and associated implementations can be
conveniently integrated into other customizable Google Earth
applications to support interactively visualizing and analyzing
geospatial objects defined by KML geometry elements, especially
subsurface features.

Acknowledgments

This research was supported by the Social Science Foundation
of Shanghai (Grant no. 2014BCK002), the National Natural Science
Foundation of China (Grant no. 40902093), the National Science
and Technology Program of China (Grant no. SinoProbe-08), the
Development Foundation of Experimental Teaching Equipment in
East China Normal University (Grant no. 64100010), and the Open
Foundation of Key Laboratory for GIS (Grant no.KLGIS2014C02).
We would like to thank Declan G. De Paor, Tom G. Blenkinsop and
the Editor for their helpful and constructive suggestions for
improving the paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2014.07.016.

References

Bailey, J.E., Chen, A., 2011. The role of virtual globes in geoscience. Comput. Geosci.
37 (1), 1–2.

Bailey, J.E., Whitmeyer, S.J., De Paor, D.G., 2012. Introduction: the application of
Google Geo Tools to geoscience education and research. Geological Society of
America Special Papers 492, pp. vii–xix.

Ballagh, L.M., Raup, B.H., Duerr, R.E., Khalsa, S.J.S., Helm, C., Fowler, D., Gupte, A.,
2011. Representing scientific data sets in KML: methods and challenges.
Comput. Geosci. 37 (1), 57–64.

Blenkinsop, T.G., 2012. Visualizing structural geology: from Excel to Google Earth.
Comput. Geosci. 45 (1), 52–56.

Butler, D., 2006. Virtual globes: the web-wide world. Nature 439 (7078), 776–778.
De Paor, D.G., 1996. Computation of orientations for GIS – the ‘Roll’ of quaternions.

Comput. Methods Geosci. 15, 447–456.

De Paor, D.G., Pinan-Llamas, A., 2006. Application of novel presentation techniques
to a structural and metamorphic map of the Pampean Orogenic Belt, NW
Argentina. Geol. Soc. Am. Abstr. Programs 38 (7), 326.

De Paor, D.G., Whitmeyer, S.J., 2011. Geological and geophysical modeling on virtual
globes using KML, COLLADA, and Javascript. Comput. Geosci. 37 (1), 100–110.

De Paor, D.G., Whitmeyer, S.J., Gobert, J., 2008. Emergent models for teaching
geology and geophysics using Google Earth. Eos Trans. Am. Geophys. Union
89 (53) (abstract ED31A-0599).

De Paor, D.G., Whitmeyer, S.J., Marks, M., Bailey, J.E., 2012. Geoscience applications
of client/server scripts, google fusion tables, and dynamic KML. Geological
Society of America Special Papers 492, pp. 77–104.

De Paor, D.G., Williams, N.R., 2006. Solid modeling of moment tensor solutions and
temporal aftershock sequences for the Kiholo Bay earthquake using Google
Earth with a surface bump-out. Eos Trans. Am. Geophys. Union, 87; (abstract
S53E-05).

Dordevic, M.M., 2012. Designing interactive screen overlays to enhance effective-
ness of Google Earth geoscience resources. Geo. Soc. Am. Special Pap. 492,
105–111.

Dordevic, M.M., 2013. Slope Faliure at Kilauea Volcano 〈http://www.digitalplanet.
org/API/SOS/index.html〉 (accessed 28.03.14.).

Dordevic, M., Whitmeyer, S., 2014. Move and Rotate Google Earth Elements. 〈http://
geode.net/etc/poly〉 (accessed 04.07.13.).

Goodchild, M.F., Guo, H., Annoni, A., Bian, L., de Bie, K., Campbell, F., Craglia, M.,
Ehlers, M., van Genderen, J., Jackson, D., Lewis, A.J., Pesaresi, M., Remetey-
Fülöpp, G., Simpson, R., Skidmore, A., Wang, C., Woodgate, P., 2012. Next-
generation digital Earth. Proc. Natl. Acad. Sci. USA 109 (28), 11088–11094.

Google, 2014. Google Earth API Reference. 〈https://developers.google.com/earth/
documentation/reference〉 (accessed 20.03.14.).

Lee, T., Guertin, L., 2012. Building an education game with the Google Earth
application programming interface to enhance geographic literacy. Geol. Soc.
Am. Special Pap. 492, 395–401.

Martínez-Graña, A.M., Goy, J.L., Cimarra, C.A., 2013. A virtual tour of geological
heritage: Valourising geodiversity using Google Earth and QR code. Comput.
Geosci. 61 (1), 83–93.

Navin, J., de Hoog, M., 2011. Presenting geoscience using virtual globes. AusGeo
News 104, 15–19.

Nurik, R., 2009. An overview of using KML in the Earth API. 〈https://developers.
google.com/earth/articles/earthapikml〉 (accessed 20.03.14).

Postpischl, L., Danecek, P., Morelli, A., Pondrelli, S., 2011. Standardization of seismic
tomographic models and earthquake focal mechanisms data sets based on web
technologies, visualization with keyhole markup language. Comput. Geosci.
37 (1), 47–56.

SoftComplex Inc., 2010. Tigra Slider Control. 〈http://www.softcomplex.com/pro
ducts/tigra_slider_control〉 (accessed 07.07.13.).

Stewart, M.E., Baldwin, K., 2012. Workshops, community outreach, and KML for
visualization of marine resources in the Grenadine Islands. Geol. Soc. Am.
Special Pap. 492, 63–76.

Wang, Y., Huynh, G., Williamson, C., 2013. Integration of Google Maps/Earth with
microscale meteorology models and data visualization. Comput. Geosci. 61 (1),
23–31.

Wernecke, J., 2009. The KML Handbook: Geographic Visualization for the Web.
Addison-Wesley, Upper Saddle River, USA p. 339.

Whitmeyer, S., 2012. Moving Polygons in Google Earth. 〈http://www.digitalplanet.
org/site/NewOct12.html〉 (accessed 04.09.13.).

Whitmeyer, S.J., Nicoletti, J., De Paor, D.G., 2010. The digital revolution in geologic
mapping. GSA Today 20 (4/5), 4–10.

Wilson, T. (Ed.), 2008. OGC KML. OGC07-147r2. Open Geospatial Consortium, Inc.
〈http://portal.opengeospatial.org/files/?artifact_id=27810〉 (251 pp. accessed
28.03.14).

Yu, L., Gong, P., 2012. Google Earth as a virtual globe tool for Earth science
applications at the global scale: progress and perspectives. Int. J. Remote Sens.
33 (12), 3966–3986.

Zhu, L., Wang, X., Zhang, B., 2014. Modeling and visualizing borehole information
on virtual globes using KML. Comput. Geosci. 62 (1), 62–70.

L.-f. Zhu et al. / Computers & Geosciences 72 (2014) 176–183 183

http://dx.doi.org/10.1016/j.cageo.2014.07.016
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref1
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref1
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref2
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref2
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref2
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref3
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref3
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref4
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref5
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref5
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref6
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref6
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref6
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref7
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref7
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref8
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref8
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref8
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref9
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref9
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref9
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref9
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref10
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref10
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref10
http://www.digitalplanet.org/API/SOS/index.html)
http://www.digitalplanet.org/API/SOS/index.html)
http://www.geode.net/etc/poly
http://www.geode.net/etc/poly
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref11
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref11
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref11
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref11
https://developers.google.com/earth/documentation/reference
https://developers.google.com/earth/documentation/reference
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref12
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref12
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref12
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref13
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref13
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref13
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref14
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref14
https://developers.google.com/earth/articles/earthapikml
https://developers.google.com/earth/articles/earthapikml
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref15
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref15
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref15
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref15
http://www.softcomplex.com/products/tigra_slider_control
http://www.softcomplex.com/products/tigra_slider_control
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref16
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref16
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref16
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref17
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref17
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref17
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref18
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref18
http://www.digitalplanet.org/site/NewOct12.html
http://www.digitalplanet.org/site/NewOct12.html
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref19
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref19
http://www.portal.opengeospatial.org/files/?artifact_id=27810
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref21
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref21
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref21
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref22
http://refhub.elsevier.com/S0098-3004(14)00182-4/sbref22

	Moving KML geometry elements within Google Earth
	Introduction
	KML geometry elements
	General framework and key steps
	Load KML objects
	Extract KML geometry elements
	Set movement distances
	Adjust geographic coordinates of KML geometry elements
	Calculate geographic locations for moving transformation
	Adjust geographic coordinates in a fast and batched way

	Display transformed KML geometry elements on Google Earth

	Implementation and application
	Conclusion
	Acknowledgments
	Supporting information
	References

