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Taking the Yarkand River as an example, this paper conducted an integrative approach combining the Durbin-Watson statistic
test (DWST), multiple linear regression (MLR), wavelet analysis (WA), coefficient of determination (CD), and Akaike information
criterion (AIC) to analyze the climatic-hydrological process of inland river, Northwest China from a multitime scale perspective.
The main findings are as follows. (1) The hydrologic and climatic variables, that is, annual runoff (AR), annual average temperature,
(AAT) and annual precipitation (AP), are stochastic and, no significant autocorrelation. (2) The variation patterns of runoff,
temperature, and precipitation were scale dependent in time. AR, AAT, and AP basically present linear trends at 16-year and 32-year
scales, but they show nonlinear fluctuations at 2-year and 4-year scales. (3) The relationship between AR with AAT and AP was
simulated by the multiple linear regression equation (MLRE) based on wavelet analysis at each time scale. But the simulated effect
at a larger time scale is better than that at a smaller time scale.

1. Introduction

The hydrological response to climate change is an important
science issue. To well understand this issue, the coupled
system of climatic-hydrological process should be thoroughly
studied at different spatial and temporal scales.

Theoretically, a process can be evaluated to determine
if they comprise an ordered, deterministic system, an un-
ordered, random system, or a chaotic, dynamic system,
and whether change patterns of periodicity or quasi-peri-
odicity exist. However, it is difficult to achieve a thorough
understanding of the mechanism of climatic-hydrological
processes [1]. To date, these questions have not received
satisfactory answers [2].

Case studies in different countries and regions have
suggested that the climatic-hydrological process is a complex
system [3-6]. Therefore, more studies are required to explore
the mechanism of climatic-hydrological process from differ-
ent perspectives and using different methods. As a result,
the climatic-hydrological process has been explored using

various analytical methods, including the fractal theory [7-
9], self-organized criticality [10], wavelets analysis [11-13],
and artificial neural networks [14, 15]. Although there were
several effective methods available to reveal the variations in
climatic-hydrological process [16-19], it has proven difficult
to achieve a thorough understanding of the mechanism of
climatic-hydrological process in inland river [2].

In the last 20 years, studies have been conducted to
evaluate climate change and hydrological and ecological
processes in the arid and semiarid regions in northwestern
China [18-25]. Some studies have indicated that there was a
visible transition in the hydroclimatic processes in the past
half-century [24, 26-28]. This transition was characterized by
a continual increase in temperature and precipitation, added
river runoff volumes, increased lake water surface elevation
and area, and elevated groundwater level. This transition
may present a series of questions if these changes represent
a localized transition to a warm and wet climate type in
response to global warming, or merely reflect a centennial
periodicity in hydrological dynamics. To date, these questions



have not received satisfactory answers; therefore, more stud-
ies are required to explore the nonlinear characteristics of
hydroclimatic process from different perspectives and using
different methods [2, 15, 29].

Though some studies have shown that the inland river
in northwest China (NW China), such as the Yarkand River,
is mainly recharged by snowmelt, the main climatic factors
affecting the streamflow are temperature and precipitation
[20, 30, 31]. But due to the complexity of hydroclimatic sys-
tem, it is difficult to understand the mechanism of climatic-
hydrological process thoroughly [2]. For the above reasons,
this paper did not involve the complex physical mechanisms
but conducted an integrative approach combining statistics
and wavelet analysis to understand the variation of annual
runoft and its response to climatic factors at different time
scales.

2. Materials and Methods

2.1. Study Area and Data. The Yarkand River is a typical
representative of inland rivers, which is located in the
Tarim River Basin of Xinjiang Uygur Autonomous Region,
northwestern China (Figure 1), with a length of 1097 km. The
Yarkand River (35°40" ~ 40°31'N, 74°28' ~ 80°54'E) has a
total basin area of 9.89 x 10* km?, including 6.08 x 10* km*
as the mountain area, which accounts for 61.5%, and 3.81 x
10*km? as the plain area, which takes up 38.5% [31]. The
main stream of Yarkand River originates from Karakoram
Pass in the north slope of Karakoram Mountain, which is full
of towering peaks and glaciers, as well as the extremely rare
precipitation in plain. Due to the special geographical con-
ditions, the accumulation of ice and snow in high mountain
is the only supply source for runoff. Therefore, the Yarkand
River is a typical ice-snow supply river, in which the multiyear
average runoff in Kaqun hydrometric station consists of
64.0% from mean volume of glacial ablation, 13.4% from
rain and snow supply, and 22.6% from groundwater supply,
respectively [32, 33].

For the Yarkand River is an inland river, no water
recharges in the plain area, and its stream flow mainly
comes from mountainous area, that is, the Pamir Mountains.
In other words, the streamflow of the Yarkand River is
mainly fed by glacier and snowmelt in the Pamir Mountains.
Therefore, the climatic factors, especially temperature and
precipitation, directly affect the annual changes in the runoft.
So we use the runoft as well as temperature and precipitation
data to analyze the climatic-hydrological process in Yarkand
River. The runoff data were from the Kaqun hydrologic
station, and temperature and precipitation data were from
Tash Kurghan meteorological station. The two stations are
located in the source areas of the river; the amount of water
used by humans is minimal compared to the total discharge.
Therefore, the observed hydrological and meteorological
records reflect the natural conditions.

Long-term climate changes can alter the runoff pro-
duction pattern, the timing of hydrological events, and the
frequency and severity of floods, particularly in arid or
semiarid regions. Therefore, a small change in precipitation
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and temperature may result in marked changes in runoff.
To investigate the runoff and its related climatic effect, this
study used the time series data of annual runoff (AR), annual
average temperature (AAT), and annual precipitation (AP)
from 1957 to 2008.

2.2. Methods. In order to study the variations of streamflow
with regional climate change at different time scales, this
paper conducted a comprehensive method including the
Durbin-Watson statistic test (DWST), multiple linear regres-
sion (MLR), wavelet analysis (WA), coefficient of determina-
tion (CD), and Akaike information criterion (AIC). Firstly,
the DWST was used to explore the stochastic characteristic
of hydrologic and climatic variables. Secondly, the WA was
used to reveal the variation patterns of annual runoft (AR)
and its related climatic factors at different time scales. Thirdly,
the relationship between AR with AAT and AP was simulated
by MLR based on WA at different time scales. Finally,
the estimated effect of multiple linear regression equation
(MLRE) at each time scale was tested by CD and AIC.

2.2.1. Durbin-Watson Statistic Test. The Durbin-Watson
statistic is a test statistic used to detect the presence of
autocorrelation (a relationship between values separated
from each other by a given time lag) in the residuals (pre-
diction errors) from a regression analysis [34, 35].

For a variable y, the Durbin-Watson statistic is
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wheree; = y;—¥;,and y; and y; are, respectively, the observed
and predicted values of the response variable for individual #;
n is the number of observations.

To test for positive autocorrelation at significance «, the
test statistic DW is compared to lower and upper critical
values (d; and dy;): if DW < d, there is statistical evidence
that the error terms are positively autocorrelated; if DW >
dy, there is no statistical evidence that the error terms are
positively autocorrelated; if d; < DW < d, the test is
inconclusive.

To test for negative autocorrelation at significance «, the
test statistic 4 — DW is compared to lower and upper critical
values (d; and dy;): if (4 — DW) < d;, there is statistical
evidence that the error terms are negatively autocorrelated; if
(4 — DW) > dy,, there is no statistical evidence that the error
terms are negatively autocorrelated; if d; < (4 — DW) < dy,
the test is inconclusive.

Using the Durbin-Watson statistic, we checked the auto-
correlation of hydrological and climatic variables, such as
temperature, precipitation, and runoff.

DW

2.2.2. Wavelet Analysis. Wavelet transformation has been
shown to be a powerful technique for characterization of
the frequency, intensity, time position, and duration of
variations in climate and hydrological time series [11, 12, 16,
36]. Wavelet analysis can also reveal the localized time and
frequency information without requiring the time series to
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FIGURE 1: Location of the Yarkand River.

be stationary, as required by the Fourier transform and other
spectral methods [37].

A continuous wavelet function W¥(#) that depends on a
nondimensional time parameter 7 can be written as [36]

¥ () = ¥ (a,b) = |a|*”2\lf<ﬂ), @)

a

where t denotes time, a is the scale parameter, and b is the
translation parameter. W(#) must have a zero mean and be
localized in both time and Fourier space [38]. The continuous
wavelet transform (CWT) of a discrete signal, x(t), such
as the time series of runoff, temperature, or precipitation,
is expressed by the convolution of x(¢) with a scaled and
translated ¥ (#),

W, (a,b) = |a| 2 jm OV <%> G

0

where # indicates the complex conjugate, and W, (a,b)
denotes the wavelet coefficient. Thus, the concept of fre-
quency is replaced by that of scale, which can characterize the
variation in the signal, x(t), at a given time scale.

Selecting a proper wavelet function is a prerequisite for
time series analysis [39, 40]. The actual criteria for wavelet

selection include self-similarity, compactness, and smooth-
ness [41]. Because the symlets are nearly symmetrical, orthog-
onal, and biorthogonal wavelets proposed by Daubechies as
modifications to the db family [41], this study chose the
symlets 8 to analyze the variation patterns of runoft and
its related climatic factors in the computing environment of
MATLAB.

For a time series, x(t), it can be analyzed at multiple
scales through wavelet decomposition on the basis of the
discrete wavelet transform (DWT). The DWT is defined
taking discrete values of a and b. The full DWT for signal,
x(t), can be represented as [42]
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where ¢, ((f) and y;,(t) are the flexing and parallel shift
of the basic scaling function, ¢(t), and the mother wavelet
function, y(), and y;  (j < jo) and w; ;. are the scaling coef-
ficients and the wavelet coefficients, respectively. Generally,
scales and positions are based on powers of 2, which is the
dyadic DWT.



Once a mother wavelet is selected, the wavelet transform
can be used to decompose a signal according to scale, allow-
ing separation of the fine-scale behavior (detail) from the
large-scale behavior (approximation) of the signal [43]. The
relationship between scale and signal behavior is designated
as follows: low scale corresponds to compressed wavelet as
well as rapidly changing details, namely, high frequency;
whereas high scale corresponds to stretched wavelet and
slowly changing coarse features, namely, low frequency.
Signal decomposition is typically conducted in an iterative
fashion using a series of scales such as a = 2,4,8,... L2k
with successive approximations being split in turn so that
one signal is broken down into many lower resolution
components.

The wavelet decomposition and reconstruction were used
to approximate the variation patterns of AR and its related
factors over the entire study period at the selected different
time scales.

2.2.3. Multiple Linear Regression. For understanding the
relationship between annual runoft with its related climatic
factors at different time scales, we employed multiple linear
regression (MLR) based on wavelet analysis. This method fits
multiple linear regression equation (MLRE) between AR with
AAT and AP by using multiple linear regression (MLR) based
on the results of wavelet approximation [44].
The multiple linear regression model is

Y =ay+ax; +ayX, + 0+ A X (5)

where y is dependent variable, x; is the independent vari-
ables; g; is the regression coefficient, which is generally
calculated by method of least squares [45]. In this study,
the dependent variable is the annual runoff (AR) and the
independent variables are related climatic factors, such as the
annual average temperature (AAT) and annual precipitation
(AP).

2.2.4. Coefficient of Determination and Akaike Information
Criterion. In order to identify the uncertainty of the esti-
mated model for a given time scale, the coefficient of deter-
mination, also known as the goodness of fit, was calculated as
follows:

n ~\2
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where R* is the coefficient of determination; ¥, and y, are the
simulated value and actual data of runoff, respectively; y is
the mean of y; (i = 1,2,...,n); RSS = Y7 (y; — 7,)* is the
residual sum of squares; TSS = Y7 (y; — 7)° is the total sum
of squares.

The coefficient of determination is a measure of how
well the simulated results represent the actual data. A bigger
R? indicates a higher certainty and lower uncertainty of the
estimates [45].

To compare the relative goodness between the ANN and
multiple linear regression (MLR) fit for a given timescale, we
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also used the measure of Akaike information criterion (AIC)
[46]. The formula of AIC is as follows:

AIC:2k+nln<R—SS), (7)
n

where k is the number of parameters estimated in the model;
nis the number of samples; RSS is the same as in formula (6).
A smaller AIC indicates a better model.

For small sample sizes (i.e., n/K < 40), the second-order
Akaike information criterion (AIC,) should be used instead:

2k (k+1)

n-k-1’ ®

AIC, = AIC +

where 7 is the sample size. As the sample size increases, the
last term of the AIC, approaches zero, and the AIC, tends to
yield the same conclusions as the AIC [47].

3. Results

3.1. Check for Variable’s Autocorrelation. The premise of
statistics indicates that models imply an assumption; that is,
variables are stochastic and no significant autocorrelation is
present. Is it really? This can be demonstrated by statistical
check for variable’s autocorrelation (Table 1).

For (1%), (2*), and (3%) in Table 1, their degree of freedom
is, respectively, k equals 2and N (i.e., n—k—1) equals 51. Upper
and lower critical values of the Durbin-Watson Statistic (DW)
are d; equals 1.509 and d; equals 1.58 when significance level
(«) equals 0.01. Because the values of DW are between d; and
4 — dy, it is obvious that annual runoff (AR), annual average
temperature (ATT), and annual precipitation (AP) indicate
no autocorrelation.

For (4%) in Table 1, its degree of freedom is, respectively,
k equals 4 and N equals 51. Upper and lower critical values
of DW are d; equals 1.25350 and di; equals 1.49384 when
significance level («) equals 0.01. For (5%), its degree of
freedom is, respectively, k equals 6 and N equals 51. Upper
and lower critical values of DW are d; equals 1.17372 and d;
equals 1.58811 when significance level («) equals 0.01. Thereby
they indicate no autocorrelation either.

In fact, it can be determined that variables and model
reveal non-autocorrelation because the value of DW is close
to 2 for each regression equation shown in Table 1. Therefore,
the assumption of our model is logical.

3.2. Variation Patterns of Climatic-Hydrological Process at
Different Time Scales. Our previous study indicated that [44]
the annual average temperature and annual precipitation
are the most important factors that related with the annual
runoff. The result was also supported by the other studies for
the headwaters of the Tarim River Basin [20, 30-33].

The raw data of AR, AAT, and AP showed fluctuation.
It is difficult to identify any patterns simply based on the
raw data. In order to show the scale-dependent with time
for the climatic-hydrological process of the Yarkand River,
the wavelet analysis was used. The nonlinear variation for the
annual runoff process and the related climate factors were
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TABLE 1: Statistical check for variable’s autocorrelation.

Dependent Indep_endent Function R F DW
variable variable

AR, AR, AR, = 76.852 — 0.156AR, _, (1) 0.024 1125 1.981
AAT, AAT,, AAT, = 2.526 — 0.290AAT,_, (2%) 0.093 5.014 1835
AP, AP, AP, = 81.338 — 0.118AP, | (3") 0.013 0.659 1851
AR, AAT, AP, AR,_, AR, = 66.677 + 3.191AAT, — 0.025AP, — 0.145AR,_, (4*) 0.091 1572 2.023

AAT,, AP, AR, |,

AR, AAT, |, AP, ,

AR, = 62.516 + 2.051AAT, — 0.048AP, — 0.186AR,_, + 2.702AAT,_, + 0.042AP, | (5*) 0.123 1.266 1931

Notes. AR: annual runoff, AAT: annual average temperature, and AP: annual precipitation; the subscripts, t and t — 1, represent time.

Annual runoff (108m?)

1957 1963 1969 1975 1981 1987 1993 1999 2005

Annual average
temperature ("C)

1957 1963 1969 1975 1981 1987 1993
(b)

1999 2005

110
90 f
70
50
30
1957 1963 1969 1975 1981 1987 1993 1999 2005

Annual precipitation (mm)

—o— SI (the time scale of 2 years) —— S4 (the time scale of 16 years)
—— S2 (the time scale of 4 years) —— S5 (the time scale of 32 years)
—— §3 (the time scale of 8 years)

(c)

FIGURE 2: Variation patterns at different time scales of (a) annual
runoff, (b) annual average temperature, and (c) annual precipitation.

analyzed at multiple-year scales through wavelet decompo-
sition on the basis of the discrete wavelet transform (DW'T).

The wavelet decomposition for the time series of annual
runoft at five time scales resulted in five variation patterns
(Figure 2(a)). The S1 curve retains a large amount of residual
from the raw data, and drastic fluctuations exist in the
period from 1957 to 2008. These characteristics indicate that
although the runoft varied greatly throughout the study
period, there was a hidden increasing trend. The S2 curve still

retains a considerable amount of residual, as indicated by the
presence of 4 peaks and 4 valleys. However, the S2 curve is
much smoother than the S1 curve, which allows the hidden
increasing trend to be more apparent. The S3 curve retains
much less residual, as indicated by the presence of 2 peaks
and 2 valleys. Compared to S2, the increase in runoff over
time is more apparent in S3. Finally, the S5 curve presents an
ascending tendency, whereas the increasing trend is obvious
in the S4 curve.

Accordingly, Figures 2(b) and 2(c) provide us with a
method for comparing the variation patterns of annual
average temperature and annual precipitation at different
time scales. The wavelet decomposition for the time series at
five time scales resulted in five variation patterns, respectively.
These five time scales are also designated as SI to S5.
The curves present an ascending tendency despite drastic
fluctuations in SI and S2. Then, the curves are getting much
smoother and the increasing trend becomes even more
obvious as the scale level increases.

The upper analysis showed that the nonlinear variations
of runoff, temperature, and precipitation of the Yarkand River
basin were dependent on time scales. The annual runoft,
annual average temperature and annual precipitation at five
time scales resulted in five patterns of nonlinear variations,
respectively.

3.3. Relationship between Streamflow and Climate Factors.
Based on the raw data of AAT, AP, and AR, multiple linear
regression equation (MLRE) was developed as follows:

AR = 3.5AAT - 0.037AP + 56.75,

)

R* =0.1983, F=2517, a=0.1.

Equation (9) reveals a positive correlation between the
annual runoftf and the annual average temperature. These
results are readily supported by the fact that the majority of
streamflow comes from glacial melt and snowmelt, which
have been occurring at increased rates as the temperature
increases. These results have been confirmed by other studies
[48]. However, (9) also indicates the existence of a weak, neg-
ative correlation between the annual runoff and the annual
precipitation, which does not seem reasonable. Indeed, this
finding conflicts with the results of other studies, which have
suggested that both the temperature and precipitation series
in the Tarim Basin have been increasing in a pattern similar
to that of annual runoft over the past 50 years [20, 30].



Additionally, the coefficient of determination of (9) is
as low as 0.093. Furthermore, the average absolute error
and average relative error for predicted results is as high
as 9.014 x 10°m’ and 14.11%, respectively. All this means
that the regression (9) is not authentic. What is the reason
for this? It is possible that this inconsistency is caused by
randomicity in the raw time-series data, which should be
filtered out via wavelet decomposition based on the discrete
wavelet transform [17, 18].

To understand the response of the runoff to regional
climatic change at different time scales, based on the results of
wavelet decomposition (Figure 2), multiple linear regression
equation (MLRE) at each time scale was fitted for describing
the relationship among annual runoff, annual average tem-
perature, and annual precipitation (Table 2).

3.4. Comparison of the Estimated Results at Different Time
Scales. Though all MLREs at each time scale in Table 2 got
across the statistical test at the significant level of 0.01 or
0.001, the predicted error of MLRE at the chosen time scales
is different. Figure 3 shows the comparison for the simulated
value by MLREs and original data of AR at different time
scales. The predicted error of MLRE at the time scale of S1
and S2 (i.e., 2-year and 4-year scales) is large, that at the time
scale of S3 (i.e., 8-year scale) is also fairish, and wee predicted
error of MLRE at the time scale of S4 and S5 (i.e., 4-year and
5-year scales) appears. These results show that MLRE only can
well fit the relationship between runoft and climate factors at
large time scale such as at 16-year and 32-year scales.

By comparing the R* and AIC value in Table 3, we can
know the estimated effect (good or bad) of models at different
time scales.

Table 3 tells us that the R* for MLRE at the time scale of
SI and S2 (i.e., 2-year and 4-year scales) is lower (only 0.361
and 0.416, resp.) and that at the time scale of S3 (i.e., 8-year
scales) is higher, reaching 0.894. Only the MLRE at the time
scale of S4 and S5 (i.e., 16-year and 32-year scales) has the
high coefficient of determination, which is as high as 0.975
and 0.996, respectively.

The lower AIC value indicates better model, which tells
us that the MLRE at time scale of S5 is the best, that at time
scale of S4 is better, that at time scale of S3 is moderate, that
at time scale of S2 is the penult, and that at time scale of Sl is
the worst.

Overall, the relationship between AR with AAT and AP
was simulated by the multiple linear regression (MLR) based
on wavelet analysis at different time scales, but the simulated
effect at a larger time scale is better than that at a smaller time
scale.

4. Discussion and Conclusions

Many studies indicated that the climatic-hydrological process
is a complex system with nonlinearity, but it is difficult to
understand the mechanism of climatic-hydrological process
thoroughly [2]. Our results showed the following fact: the
simulated effect at large time scale is better than that at small
time scale, and the estimated precision at large time scale is
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FIGURE 3: The simulated value for AR and its original data.

higher than that at small time scale. What are the causes for
this? It is difficult to thoroughly answer the question because
of the nonlinear complicated climatic-hydrological process,
which is essentially difficult to precisely predict [15].

Our study revealed that the climatic-hydrological process
at larger time scale (e.g., 16-year or 32-year scales) basically
presented a linear process, but that at smaller time scale
(e.g., 2-year or 4-year scales) is essentially nonlinear process
with complicated causations. Because the time series of
runoff are essentially monotonic trends related to long-term
climatic changes at large time scale (e.g., 16-year and 32-year
scales), the estimated precision is much higher. Otherwise,
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TABLE 2: MLREs for climatic-hydrological process at different time scales.

Time scale Regression equation R’ F Significance level «  Average absolute error  Average relative error
S1 AR = 3.243AAT + 54.89 0.361 4.763 0.01 6.266 9.665%
S2 AR =2.883AAT + 0.173AP + 43.62  0.4157 15.6492 0.001 3.250 4.959%
S3 AR =5.792AAT + 0.116AP + 37276 0.894  205.729 0.001 0.880 1.354%
S4 AR =3.332AAT + 0.189AP + 40.618  0.975 943.228 0.001 0.329 0.502%
S5 AR = 2.555AAT + 0.206AP +42.353 0.996 6701.914 0.001 0.109 0.165%

Notes. AR: annual runoff, AAT: annual average temperature, and AP: annual precipitation.

TaBLE 3: R* and AIC for MLREs at different time scales.

Time scale R? AIC
S1 0.361 209.924
S2 0.416 143.263
S3 0.894 12.960
S4 0.975 -96.714
S5 0.996 -209.172

due to the difficulty to accurately predict nonlinear climatic-
hydrological process at small time scales (e.g., 2-year or 4-
year scale), the estimated precision and simulated effect are
not satisfactory.

Nevertheless, the comprehensive method conducted by
this paper provides a method to understand the climatic-
hydrological process in the Yarkand River from the perspec-
tive of multiscale, which may be used to explore the climatic-
hydrological process in other inland rivers of northwest
China.

The main conclusions of this work can be summarized as
follows.

(1) The hydrologic and climatic variables, that is, annual
runoft (AR), annual average temperature (AAT), and
annual precipitation (AP) are stochastic and show no
significant autocorrelation.

(2) The variation pattern of runoff, temperature, and pre-
cipitation was scale dependent with time. The annual
runoft (AR), annual average temperature (AAT), and
annual precipitation (AP) basically present linear
trends at 16-year and 32-year scales, but they show
nonlinear fluctuations at 2-year, 4-year, and 8-year
scales.

(3) The relationship between AR with AAT and AP was
simulated by the multiple linear regression equation
(MLRE) based on wavelet analysis at each time scale.
The results showed that the AR is basically monotonic
trend related to long-term climatic changes at a larger
time scale (e.g., 16-year or 32-year scales), and the
estimated precision is much higher. But due to an
essentially nonlinear climatic-hydrological process at
a smaller time scale (e.g., 2-year or 4-year scales), the
estimated precision is lower than that at a larger time
scale.
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