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Floodplain inundation plays a key role in riparian ecosystems. Remote sensing pro-
vides an advanced technology for detecting floodplain inundation, but the trade-off
between the spatial and temporal resolutions of remotely sensed imagery is a well-
known issue. Sub-pixel mapping is an effective way to mitigate the trade-off by
improving the spatial resolution of image classification results while keeping their
temporal resolution. It is therefore useful for improving the mapping of highly
dynamic flood inundation using coarse-resolution images. However, traditional sub-
pixel mapping algorithms have limitations on delineating the extent of floodplain
inundation that reveals linear and complex characteristics. A modified pixel-swapping
(DMPS) algorithm which is based on a digital elevation model (DEM) is thus devel-
oped in this study. It is built on the widely accepted pixel-swapping (PS) algorithm and
one of its derivatives, the linearized pixel-swapping (LPS) algorithm. A Landsat image
recording a significant flood inundation event in the Chowilla Floodplain of the
Murray–Darling Basin in Australia was used as a case study. The results show that
the DMPS algorithm outperformed the original PS and LPS algorithms both in
accuracy and rationality of the resultant map. It improves the accuracy and the
kappa coefficient by about 5% and 0.1, respectively, in comparison with the PS
algorithm. The spatial pattern of inundation derived from the DMPS algorithm reveals
fewer breakpoints and errors along the river channels. Moreover, it is observed that the
DMPS algorithm is less sensitive to some critical parameters compared with the PS
and LPS algorithms. It is hoped that the proposed DMPS algorithm will broaden the
application of coarse-resolution sensors in floodplain inundation detection, which
would thereby benefit the ecological studies in floodplains.

Keywords: sub-pixel mapping; super-resolution mapping; lidar DEM; remote sensing;
inundation detection

1. Introduction

River floodplains are very important to humanity and the environment. They not only
serve as buffers against the effects of extreme floods and droughts, but also support
riparian ecosystems, both in quantity and diversity (Arnesen et al. 2013). The spatial and
temporal pattern of flood inundation is critical to the distribution of flora and fauna
(Townsend and Walsh 1998; Ordoyne and Friedl 2008). Inundation mapping, therefore,
plays a crucial role in the ecological studies of floodplains. Remotely sensed imagery has
been widely used in inundation detection (Brivio et al. 2002; Di Baldassarre, Schumann,
and Bates 2009; Auynirundronkool et al. 2012; Huang, Chen, and Wu 2014) because of
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its efficiency on continuously acquiring ground information at various scales. Numerous
sensors have been proved to be able to map inundation (Islam and Sado 2000; Toyra,
Pietroniro, and Martz 2001; Schumann, Di Baldassarre, and Bates 2009; Islam, Bala, and
Haque 2010; Chen et al. 2011, 2012, 2013), but none of them are suitable for all situations
(Osorio and Galiano 2012; Huang, Chen, and Wu 2013). Medium- to high-resolution
images, such as Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+)
and Advanced Land Observation Satellite (ALOS), are typically available fortnightly or
less often, which limits their application for intensively and continuously monitoring flood
events. Whereas coarse-resolution sensors such as the Advanced Very High Resolution
Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) scan
the earth’s surface once or several times a day, they have coarse spatial resolution, which
hampers the correct mapping of flooded areas. There is often a trade-off between the
temporal and spatial resolutions of remotely sensed imagery.

Super-resolution mapping, also known as sub-pixel mapping, is a method that aims to
mitigate this trade-off by increasing the spatial resolution of soft classification results from
remotely sensed images (Atkinson 2005). In contrast to hard classification, which assigns
one class to each individual pixel, soft classification derives a fraction map for each class.
The fraction map only maintains the proportion of the same class within each pixel,
without specifying the location of the class. Many algorithms have been developed to
spatially allocate sub-pixels within each coarse pixel of fraction maps, such as the
Hopfield Neural Network (Tatem et al. 2002), genetic algorithm (Mertens et al. 2003),
pixel attraction models (Mertens et al. 2006; Ling et al. 2010; Ling et al. 2013), and pixel-
swapping (PS) algorithm (Atkinson 2005; Thornton, Atkinson, and Holland 2006, 2007;
Makido, Shortridge, and Messina 2007; Shen, Qi, and Wang 2009; Su et al. 2012).
Although these algorithms use different approaches, their foundation is similar. They
are all based on the spatial correlation of land cover information, referring to the tendency
for spatially proximate observations of a land cover feature to be more alike than more
distant observations (Tatem et al. 2001; Atkinson 2005). Focusing on maximizing the
spatial correlation between neighbouring sub-pixels without integrating information on
the direction of variation, these methods tend to produce convex shapes which represent
most ground features. However, they are generally inappropriate for mapping linear
features such as roads and rivers. As floodplain inundation starts from the overbank
flow of rivers, inundation extent always reveals linear characteristics. Conventional sub-
pixel mapping algorithms are thus unsuitable for floodplain inundation detection.

Thornton et al. (2007) developed a linearised PS (LPS) algorithm for mapping rural
linear land cover features from fine-resolution remotely sensed imagery. An anisotropic
distance-decay model was employed to replace the isotropic model in the conventional PS
algorithm. The direction used in the anisotropic model was estimated by examining the
largest neighbouring proportions to enhance the prediction of linear features. However,
this might cause misleading direction information when mapping inundation, especially at
the meanders and confluences of rivers, which makes the LPS algorithm imperfect for
flood inundation mapping at a sub-pixel scale.

It is believed that when additional information on class distribution patterns is avail-
able at a sub-pixel level, more accurate sub-pixel mapping can be achieved (Nguyen,
Atkinson, and Lewis 2005, 2006). Because floodplain inundation extent has a close
relationship with topography, digital elevation models (DEMs) at sub-pixel-level resolu-
tions are considered to be valuable in providing supplementary information (Nguyen,
Atkinson, and Lewis 2005; Ling et al. 2008). A common method of inundation sub-pixel
mapping using DEM data is to assign flooded sub-pixels directly based on the elevation
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(Ling et al. 2008; Osorio and Galiano 2012; Li et al. 2013). However, this method usually
produces many gaps, speckles, and irregular shapes in the primary results, and requires
complicated post-clean-up processing. Moreover, the accuracy of this method relies
highly on the accuracy of DEM data. For radar-derived DEM data, errors are frequently
produced because of the common radar speckles. These errors may cause problems for
sub-pixel mapping using this method. Except for elevation, DEM data can be used to
derive a wealth of information about the morphology of the land surface, such as slope,
aspect, flow direction, and flow accumulation (Jenson and Domingue 1988). Streams can
also be derived from DEM data, which provides a spatial network with important
direction information that is useful for improving sub-pixel mapping of floodplain inun-
dation extent. Therefore, streams, rather than elevation data, were used for supporting sub-
pixel mapping in this study, which lowers the dependence on DEM data, in terms of DEM
data accuracy. The iterative optimization method of PS the algorithm was employed to
avoid the post-processing of the existing method.

This study, therefore, aims to achieve an improved accuracy for efficiently mapping
inundation extent using coarse-resolution images at a sub-pixel scale. The objectives are
(1) to develop a modified sub-pixel mapping algorithm based on conventional PS and
LPS algorithms by employing a finer-resolution DEM; (2) to optimize parameters in the
modified algorithm; and (3) to evaluate the accuracy of the modified algorithm in
mapping floodplain inundation using a case study.

2. Methods

A new sub-pixel mapping method called the DEM-based modified PS (DMPS) algorithm
was developed in this study. It introduced DEM data into the conventional PS and LPS
algorithms. Modifications were made mainly in two procedures, the initialization of the
sub-pixel map and the distance-decay model for attractiveness calculation. The summary
flowchart of the three algorithms is sketched in Figure 1. Detailed descriptions are
presented in the following sections.

2.1. PS algorithm and LPS algorithm

The PS is an algorithm initially proposed by Atkinson (2005) to achieve the maximum
attractiveness between same-class fractions. The input to PS is the fraction map which
maintains the class proportion within each coarse pixel. For each pixel, a fixed number of
sub-pixels is created based on a predefined scale factor (S). The scale factor refers to the
scale ratio between the coarse pixel and the sub-pixel. For example, if S = 5, then 25 sub-
pixels will be created in each coarse pixel. The PS algorithm begins with an initialization
which allocates sub-pixels randomly within the coarse pixel according to the proportion of
the target class. Then the attractiveness of all sub-pixels is calculated based on their initial
locations. For each sub-pixel i, its attractiveness Ai is calculated as a distance-weighted
function of its j = 1, 2, …, J neighbouring sub-pixels:

Ai ¼
XJ
j¼1

λijCj; (1)

where Cj is the binary class (1 for the target class and 0 for the other) of the jth pixel, and
λij is a distance-dependent weight predicted using a distance-decay model as:
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λij ¼ exp
�hi;j
α

� �
; (2)

where α is the exponential parameter of the distance-decay model, and hi;j is the Euclidean
distance between the location of sub-pixel i and a neighbouring sub-pixel j. A vector h
was introduced as

h ¼
�
hx
hy

�
¼

�
xj � xi
yj � yi

�
: (3)

hi;j then equals the modulus of vector h (Equation (4)). The Euclidean distance is
isotropic, which means the PS algorithm uses an isotropic distance-decay model:

Figure 1. Flowchart of sub-pixel mapping algorithms showing their major procedures. The grey
frame shows the basic procedures of the PS algorithm. The blue frame shows the modifications to
the PS algorithm in the LPS algorithm. The red frame shows the modifications to the PS algorithm
in the DMPS algorithm.
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hi; j ¼ hk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q
: (4)

The total number of neighbouring sub-pixels (J) is determined by a value of radius (r) that
is used to search neighbours (i.e. neighbour radius). J is calculated as:

J ¼ 2r þ 1ð Þ2�1: (5)

The algorithm then ranks the attractiveness of sub-pixels on a pixel-by-pixel basis within
each coarse pixel. Finally, sub-pixel classes are swapped if the attractiveness at the least
attractive location of class 1 is less than that at the most attractive location of class 0.
Otherwise, no change will be made. The related attractiveness is updated whenever a
change is made. The pixel-swapping process is repeated iteratively until a solution is
achieved. It stops either at a fixed number of iterations or when the algorithm converges to
a solution.

The PS algorithm was further developed by Thornton et al. (2007) as the LPS
algorithm to increase the likelihood of mapping linear features. In contrast with the
isotropic distance-decay model in the PS, the LPS employs a unique anisotropic dis-
tance-decay model in each coarse pixel, on the basis of estimated directions from the class
proportions. In a 3 × 3 moving window applied to the class proportions on the fraction
map, with the centre coarse pixel P as the target, the suggested direction inside pixel P is
extracted as the straight line connecting the two coarse pixels with largest proportions
(Figure 2(a)). The direction estimated within the moving window is employed to modify
the distance-decay model using the standard anisotropic correction (Goovaerts 1997). The
shape of the modified model changes from ellipsoid to circular, with an anisotropy ratio
(η) defining the ratio between the minor range and the major range of the ellipse. The
coordinate of vector h is transformed as

h0 ¼
"
h0f
h0ψ

#
¼ 1 0

0 η

" #"
hf

hψ

#
¼ 1 0

0 η

" #
cos θ � sin θ

sin θ cos θ

#"
hx

hy

#
;

"
(6)

where η is the anisotropy ratio and θ is determined by the estimated direction.
The anisotropic distance between sub-pixels i and j is then calculated as the modulus of

10% 30%

60%

(a) (b) (c)

50%

0%

40%

P i i

10%

0%

Figure 2. (a) Example class proportions extracted from a fraction map in a 3 × 3 moving window
for estimating the direction of pixel P. In this example, a direction shown as the line is predicted, as
decided by the shaded neighbours; (b) anisotropic distance-decay model for sub-pixel i inside pixel
P (S = 5) with a direction indicated by the line. Darker colour denotes lower weight; (c) isotropic
distance-decay model for sub-pixel i inside pixel P (S = 5). Darker colour denotes lower weight.
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vector h′. Figure 2(b) shows the anisotropic distance-decay model within the target pixel
P when S = 5 in comparison to the isotropic distance-decay model shown in Figure 2(c).

In some cases, when there are more than two neighbours that have the same largest
proportion in the moving window, a pair of pixels that have a largest distance will be
selected, i.e. a pair of diagonal pixels is preferred. There is also a probability that
directions cannot be detected for the target pixel in a moving window when all the
neighbours have the same proportion. Under this circumstance, the standard isotropic
distance-decay model will be used for calculating attractiveness of the sub-pixels inside
the target pixel.

Directions estimated from the moving window are reliable only when the shapes of
linear features are simple. For flood-inundated areas where river tributaries are dense and
river channels are meandering, misleading direction information is often derived. The
estimated directions using a moving window can hardly represent the complex flood water
dynamic properly, which therefore makes the LPS inappropriate for floodplain inundation
mapping at sub-pixel scale.

2.2. DEM-based modified PS (DMPS) algorithm for inundation mapping

To overcome the drawbacks in the PS and LPS methods, DEM data at sub-scale resolution
were introduced to modify these algorithms. With topographic information provided by
the DEM, the movement of surface water can be predicted, in forms of flow direction and
flow accumulation. Streams along with stream order can be derived from the flow
direction and flow accumulation raster. Stream order raster assigns a numeric order to
links in a stream network in order to identify and classify types of streams based on their
numbers of tributaries (Tarboton, Bras, and Rodriguez-Iturbe 1991). There are two
commonly used methods to assign orders. One is the Shreve method (Shreve 1966),
where orders are additive downslope; whenever two streams intersect, their orders are
added and assigned to the downslope stream. The other is the Strahler method (Strahler
1957), which increases the order only when streams of the same order intersect. The
Strahler method is relatively better for the modification of the algorithm because the main
stream is easier to trace using the Strahler order. And the main stream is able to provide
valuable information on the pattern of floodplain inundation extent.

The DMPS uses the stream order raster derived from the DEM data as additional input
data. For each coarse pixel with a scale factor of S, there are S × S related stream order
pixels calculated from the DEM (Figure 3(a)). Within each coarse pixel, main stream
pixels were identified by taking those pixels with the highest stream order value (Figure 3
(b)). Two major modifications were then made based on the PS and LPS algorithms using
the identified main stream pixels.

The first modification is the initial allocation of sub-pixels. Different from the random
initialization in the PS and the LPS algorithm, sub-pixels at the locations of main stream
pixels were assigned as inundated pixels with the highest priority in the DMPS algorithm.
These sub-pixels were given a special and higher value (Cj) rather than 1 in order to
secure the importance of main streams in floodplain inundation. (1 + r) was found to be an
appropriate value, where r is the neighbour radius (see as Equation (5)). After the main
stream pixels were assigned, other locations with higher stream order values had higher
priorities to be assigned as water. Figure 3(c) shows the initial assignment of a water
proportion of 40% within the coarse pixel (i.e. 10 sub-pixels need to be assigned as
inundated) along high stream order pixels. After locations with a stream order of 10 and 5
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were assigned, four sub-pixels were selected randomly from locations with a stream order
of 2 to be assigned as inundated (Figure 3(a)).

The second modification is the distance-decay model used for attractiveness calculation.
Main stream pixels were employed to estimate directions that can help improve the
anisotropic distance-decay model in the LPS algorithm. A linear least-square fitting was
applied using the main stream pixels to derive a line which predicts the direction informa-
tion (Figure 3(b)). The goodness-of-fit of the linear regression is usually evaluated using the
coefficient of determination (R2; 0 ≤ R2 ≤ 1). However, it is generally believed that an
arbitrary benchmark of R2 is not suitable for judging the fitness (Barrett 1974). In this case,
main stream pixels were identified within an S × S grid space. It was found that even when
the fitted line was considered acceptable for representing the distribution of main stream
pixels, the R2 could sometimes be very small (as in Figure 3(b)). Therefore, the fitted line
was adopted as the estimated direction in this study regardless of its R2 value. It has to be
noted that under certain circumstance, there might be no main stream pixel identified within
a coarse pixel, for example in plain areas where all stream order values are NULL. Then the
moving window approach (as shown in Figure 2) would be employed to derive direction.
The estimated direction was then applied to the anisotropic distance-decay model to
calculate the distance-dependent weight for the attractiveness of sub-pixels.

3. Case study

3.1. Data preparation

A case study area located at the Chowilla Floodplain of the Murray–Darling Basin (MDB)
of Australia (Figure 4(a)) was selected. It covers about 181,360 ha, including a large water
body (Lake Victoria), a section of the main channel of the Murray River, and its
tributaries.

The inundation map (Figure 4(b)), which comprised 1700 × 1120 pixels, was derived
from a Landsat ETM+ image at 30 m resolution using the modified normalized difference
water index (mNDWI; (Xu 2006)). The Landsat image was acquired on 13 December
2000, when there was a significant flood event in the study area. The mNDWI is one of
the most popular indices for inundation detection (Huang et al. 2012). It was calculated
using a combination of reflectances in the Green band (Band 2 of Landsat TM/ETM+

1

2 2

2 2

2 2 2

2

(a) (b) (c)

2

1 1

11 5

2

0

0

0 0 0 0

001

1+r 1+r 1+r

1+r1+r

1

1

11

0

0

0 0

0

0

010

10 10

10 10

Figure 3. (a) Stream order values at sub-pixel scale within a coarse pixel (scale factor S = 5); (b)
main stream pixels (shown as shaded) identified by selecting those with the highest stream order
value. The direction shown by the line was estimated by linear least-square fitting these main stream
pixels. R2 = 0.08; (c) initial allocation of a 40% inundation proportion within a 5 × 5 sub-pixel
window. Main stream pixels were assigned a special and higher value (1 + r), where r is the
neighbour radius. Locations with higher stream order values were assigned as inundated with higher
priorities. Blue pixels were allocated as inundated.
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image) and Short-Wave Infrared (SWIR) band (Band 5 of Landsat TM/ETM+ image) as
Equation (7). The inundation map (Figure 4(b)) was used to generate the fraction map as
the input to sub-pixel mapping. It was also used as the reference image for accuracy
evaluation:

mNDWI ¼ ðGreen� SWIRÞ=ðGreenþ SWIRÞ: (7)

The basic input of sub-pixel mapping is a fraction map, which is commonly derived from
image soft classification. In this study, a degraded fraction map was used in order to avoid
errors and uncertainties introduced by image soft classification. The degradation proce-
dure was to aggregate pixels from the Landsat-derived inundation map in a window of
size according to the required scale factor (S) into a coarse pixel. The proportion of the
coarse pixel was calculated by dividing the number of inundated pixels by the window
size. In this case, S was set to 10. The original inundation map (Figure 4(b)) was
aggregated by a 10 × 10 window with the aggregated pixel value equalling the proportion
of inundated pixels inside this window (Figure 4(c)). The resolution of the aggregated
fraction map will thus be 300 m.

Airborne light detection and ranging (lidar) provides an effective way for acquiring
three-dimensional terrain point data with high density and high accuracy. One of the

(a) (b)Inundation

Water
proportion

100%

0%

0 5 10 20 km

Elevation (m)
87

15

(d)(c)

Figure 4. Materials of case study. (a) Major water bodies and location of study area shown in a
colour composite (R2G4B7) Landsat ETM+ image; (b) original inundation map derived from the
Landsat ETM+ mNDWI image at a resolution of 30 m; (c) water fraction map maintaining water
proportion of each 300 m coarse pixel. It was derived by aggregating the original inundation map
with a scale factor of 10, and was used as the input of sub-pixel mapping; (d) 5 m DEM data applied
to the DMPS algorithm for inundation mapping.
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appealing features in lidar products is the lidar DEM. Lidar DEM data at 5 m resolution
(Figure 4(d)) were employed to provide additional information at the subscale for the
DMPS algorithm. The DEM data were resampled to 30 m using the bilinear interpolation
method in order to match the sub-pixel size. Sinks that existed in the DEM were filled
using the ArcGIS Hydrology tool. Flow direction and flow accumulation were then
derived. After that, a stream order image was generated based on flow direction and
flow accumulation using the Strahler method in the ArcGIS environment. It was then used
as an additional input to the DMPS algorithm.

3.2. Parameter optimization

In order to evaluate the modified algorithm by comparison with conventional algorithms,
all three algorithms (PS, LPS, and DMPS) were employed to derive inundation maps at
sub-pixel scale from the input fraction map (Figure 4(c)). Several parameters, including
neighbour radius (r), exponential parameter of distance-decay function (α), and anisotropy
ratio (η) are important to the accuracy of sub-pixel mapping in these algorithms.
Therefore, it is necessary to test them with a wide range of parameter values. It was
noted that the choice of parameter values is determined by the scale factor S and the input
data. With S = 10 in this case study, five different values for r and α, and three different η
values were tested (see as Table 1). All possible combinations were examined for
parameter optimization.

The neighbour radius (r) controls the impact scope of a single sub-pixel. It was initially
set to 1 to increase the speed of the algorithm, but small r often causes local convergence.
Nevertheless, it has been found that r should be less than S to ensure a given sub-pixel
cannot be attracted by other sub-pixels that belong to a non-neighbouring coarse pixel
(Atkinson 2005). The impact of different r values on the resultant map was analysed by
using fixed values for the other two parameters (Figure 5). In order to highlight the
differences on these maps, only a small region of the entire study area is displayed to
demonstrate the mapping results of different parameter values. A colour composite Landsat
image, inundation reference image, and DEM data were also displayed for referencing. It can
be seen from Figure 5 that a value of 1 is apparently too small for r in all three algorithms.
Results are relatively stable for all algorithms when r is equal to or greater than 3.

The exponential parameter of distance-decay model (α) is a parameter that balances
the weights of different distances on attractiveness. According to Equation (2), a higher α
makes the weight decay slower as distance increases. When α is too small, the weights of
the direct-neighbouring pixels are much higher than further neighbours. The effect of this
is similar to using a small r. As mentioned above, a small r often causes local conver-
gence, which results in many speckles. When α is too high, the neighbouring pixels within
the scope of r can contribute almost evenly to the attractiveness. The inundated sub-pixels
will be highly compacted towards the larger inundation extent nearby. Some on the outer
ring will be left disconnected because of the restriction of coarse pixels. An appropriate α

Table 1. Values of critical parameters tested in pixel-swapping algorithms.

Parameters Tested values Algorithms

Neighbour radius(r) 1, 3, 5, 7, 9 PS, LPS, DMPS
Exponential parameter of distance-decay model (α) 0.50, 1, 2, 5, 10 PS, LPS, DMPS
Anisotropy ratio (η) 0.10, 0.35, 0.50 LPS, DMPS
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will ensure that every sub-pixel within the search radius r contributes significantly and
properly to the attractiveness. Figure 6 shows the response of the three algorithms to
different α values. Based on the above statement, it was found that a value of 0.5 is too
small for α, especially for the PS algorithm, where there are many speckles (especially on
the north-eastern corner).

Landsat ETM+

α = 1

r = 1

r = 3

r = 5

r = 7

r = 9

α = 1
η = 0.35

α = 1
η = 0.35PS LPS DMPS

Reference image DEM

Figure 5. Responses of the three algorithms to different neighbour radius (r) values for the
demonstration area, along with colour composite Landsat image, inundation reference image, and
DEM data.
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It was also clear from Figure 6 that a value of 5 or 10 is too big for α, where there are
many disconnected linear patches on the out ring of main water bodies. Therefore, a value
of 1 or 2 is suggested as a proper choice here. Among these algorithms, LPS and DMPS
look to be relatively more stable to different values of α.

Anisotropy ratio (η) is only used when the anisotropic distance-decay model was
adopted in calculating spatial attractiveness of sub-pixels. It reveals the contrast of

Landsat ETM+ Reference image DEM

α = 0.50

α = 1

α = 2

α = 5

α = 10

η = 0.35 η = 0.35PS LPS DMPSr = 7
r = 7 r = 7

Figure 6. Responses of the three algorithms to different exponential parameter (α) values of the
distance-decay model for the demonstration area, along with colour composite Landsat image,
inundation reference image, and DEM data.
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distance decay between estimated direction and the orthogonal. When η = 1, the LPS
algorithm is actually the ordinary PS algorithm. Figure 7 shows the effect of different η
values in the LPS and the DMPS algorithms. Smaller η provides sub-pixels on the
estimated direction with higher attractiveness, which achieves more significant linear
distribution of sub-pixels. However, the trade-off is the decrease of attractiveness on the
orthogonal of estimated direction, which may generate gaps and errors. A value of 0.10
was found to be too small for both algorithms. It was also observed that the DMPS is
relatively more stable with different η values compared to the LPS.

Based on the above investigation, the resultant maps of this case study using the PS,
LPS, and DMPS algorithms with optimal parameter values are shown in Figure 8.

3.3. Accuracy evaluation

Accuracy of the resultant maps (Figure 8) derived using the three sub-pixel mapping
methods was assessed by comparison with the reference image. Evaluation maps were
generated by overlaying the resultant maps and reference image pixel by pixel. Agreement
for inundation, commission, and omission errors was identified (Figure 9). Commission

Landsat ETM+ Reference image DEM

α = 1 α = 1
LPS DMPS

r = 7 r = 7

η = 0.10

η = 0.35

η = 0.50

Figure 7. Responses of two algorithms (LPS and DMPS) to different anisotropy ratio (η) values
for the demonstration area, along with colour composite Landsat image, inundation reference image,
and DEM data.
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errors are those pixels that are inundated on the resultant map but not inundated on the
reference image. Omission errors are those pixels that are not inundated on the resultant
map but inundated on the reference image.

It can be seen from Figure 9 that the large water body (Lake Victoria) was mapped
well by all three algorithms. The PS cannot properly map linear features whose width is
less than a coarse pixel (Figure 9(a)). The inundated pixels in the resultant map tend to
gather together, and thus make many discontinuous shapes. Commission and omission
errors are widely distributed, not only on the small tributaries, but also on the main
channel of the Murray River and other major rivers. The LPS algorithm is better in
deriving linear main channel and major rivers (Figure 9(b)), but its performance is often
unsatisfying when mapping the confluences of multiple linear features. Errors frequently
appear at the river meanders and confluences (seen as rectangles in Figure 9(b)). Small
tributaries can barely be delineated using this algorithm. The DMPS algorithm yields the
best sub-pixel inundation map (Figure 9(c)). The main channel and major rivers were
mapped reasonably well and continuously, and some of the very small tributaries can even
be correctly delineated.

Inspired by Mertens et al. (2003), a mask was applied to exclude all pure pixels from
the water fraction map when calculating evaluation indices such as the overall accuracy,

Reference
image

PS

r = 7
α = 1

LPS

r = 7
α = 1
η = 0.35

DMPS

r = 7
α = 1
η = 0.35

Figure 8. Resultant maps of the PS, LPS, and DMPS algorithms with optimal parameter values,
along with the reference image. The left column shows maps of the entire study area; the right
column shows maps of the demonstration area.
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percentage of commission errors, percentage of omission errors, and kappa coefficient
(Table 2). It is quite legitimate to have the same percentage of commission and omission
errors here for each algorithm, because the principle of pixel swapping is to swap the
locations of sub-pixels that belong to different classes to achieve maximum spatial
attractiveness. If there are only two classes, whenever a commission error is produced,
there is always a corresponding omission error. The LPS algorithm yields slightly better
results than the PS algorithm. The DMPS algorithm produces a better result than both of
the other two algorithms: it improves the overall accuracy by about 5% compared with the
PS algorithm. This is largely due to the 80% accuracy of the PS algorithm (Table 2),
which leaves a maximum improvement space of only 20%. It is believed that the overall
accuracy is sometimes subjective (Chen et al. 2013). Therefore, the kappa coefficient is
usually introduced to estimate the agreement between two rasters. It is generally thought
to be a more robust measurement than overall accuracy because it takes into account the
agreement occurring by chance (Chen et al. 2013). As shown in Table 2, the result of the
DMPS algorithm has an improved kappa coefficient which is 0.11 and 0.08 higher than
the PS and LPS algorithms, respectively. This has demonstrated the merit of the DMPS
method. According to Landis and Koch (1977), kappa values from 0.41 to 0.60 and from

(a)

(b)

(c)

Matched inundation Commission error Omission error

Figure 9. Evaluation maps of different algorithms. The left column shows maps of the entire study
area; the right column shows maps of the demonstration area. (a) Evaluation map of the original PS
algorithm; (b) evaluation map of the LPS algorithm; (c) evaluation map of the DMPS algorithm.
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0.61 to 0.80 represent moderate agreement and substantial agreement, respectively. A
kappa coefficient of 0.64 therefore indicates that the DMPS algorithm is able to derive an
inundation map at sub-pixel scale with substantial accuracy, even when applied to
complex floodplain inundation conditions.

4. Conclusion

This study further developed the original PS algorithms to incorporate the linear shape
information into the super-resolution mapping technology for better detection of river
floodplain inundation extent at the sub-pixel scale. Streams derived by DEM were
employed to enhance the modified algorithm. Using a case study, the proposed DMPS
algorithm was demonstrated to be less sensitive to some critical parameters compared with
the PS and LPS methods. It achieves a more accurate super-resolution image, which
presents continuous and reasonable river floodplain inundation extent.

Generally speaking, different algorithms suit different situations. For the non-linear sub-
pixel mapping issue, the PS algorithm is simple, fast, and efficient. For sub-pixel mapping
of simple linear features, applying the LPS algorithm is basically adequate. However, for
accurate mapping of floodplain inundation extent to reveal meandering and intersecting
linear characteristics, the DMPS algorithm will be a better choice, bearing in mind that the
incorporation of DEM data would inevitably increase the run time of the algorithm.

It was also noted that the accuracy of the DEM is vital to the algorithm. As an
increasing number of DEM data become available with relatively higher spatial resolu-
tions, such as the Shuttle Radar Topography Mission (SRTM) and lidar, it is hoped that
the results of this study will enhance the application of some coarse-resolution images,
such as MODIS, in floodplain inundation detection, which would ultimately support the
ecological study of floodplains.
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